If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2x^2-4x+22=0
a = -2; b = -4; c = +22;
Δ = b2-4ac
Δ = -42-4·(-2)·22
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-8\sqrt{3}}{2*-2}=\frac{4-8\sqrt{3}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+8\sqrt{3}}{2*-2}=\frac{4+8\sqrt{3}}{-4} $
| 5/2x+1/2x=3+1/2+7/2x | | 5x−6=8x+6 | | 2x+8=x+51 | | -1(t8)=-7.1 | | 8x+(-2)=6x+8 | | 5.6-4n=11.2-2n | | -19=-t | | 6(f-3)+3=7 | | -3g-21+2g-(-20)=21 | | 7u+8=-u | | 3x+18+5x+6=90 | | 6u+4u-6=44 | | 5w+7=102 | | 10(9+y)=60 | | 4/t=8 | | 4(x-3)+2(3x+2)=62 | | 2x+3x=90,x=18 | | 19.1=1.5-2.2c | | 2k-(-4)+3-5k=10 | | -8-9f=-3-8f-3 | | 100/4=k | | (2a–5)(4a2–3a=+1) | | 13(13+49)=x^2 | | 2x+12-4=16 | | -14=-6(r-10)-2 | | 6x+40=2x+100 | | 29=5(b+7)-6 | | 4y-70-12y=2 | | 1-6n=5+1-4n-5 | | 1-6n=5+1-4n-5* | | -10y+5y-14=6 | | 1/3x+8=1/2x+5 |